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University of Sarajevo

Faculty of Educational Sciences
Skenderija 72, 71000 Sarajevo

BOSNIA AND HERZEGOVINA
snesimovic@pf.unsa.ba

Abstract: The needs of the modern world often require automatization of certain aspects of mankind activities.
Science is no exception to this. In this paper we pay attention to vague functional dependencies as generalized
functional dependencies. These dependencies are considered as fuzzy formulas. We give strict proof of the equiv-
alence: any two-element vague relation instance on given scheme (which satisfies some set of vague functional
dependencies) satisfies given vague functional dependency if and only if the attached fuzzy formula is a logical
consequence of the corresponding set of fuzzy formulas. Thanks to this result, we put ourselves into position to
automatically verify if some vague functional dependency follows from some set of vague functional dependen-
cies. An appropriate example which supports this claim is also provided.
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1 Introduction
Let U be the universe of discourse.

Suppose that V is a vague set in U .
Now, there exist functions tV : U → [0, 1], fV : U

→ [0, 1], such that tV (u) + fV (u) ≤ 1 for u ∈ U .
We shall write

V = {〈u, [tV (u) , 1− fV (u)]〉 : u ∈ U} ,

where [tV (u) , 1− fV (u)] ⊆ [0, 1] is the vague value
joined to u ∈ U .

Recall that the vague value [tV (u) , 1− fV (u)]
reduces to the fuzzy value tV (u) = 1 − fV (u) ∈
[0, 1] if it happens that tV (u) = 1 − fV (u) ∈ (0, 1).

If it happens that tV (u) = 1 − fV (u) = 1, then
the vague value [tV (u) , 1− fV (u)] reduces to the or-
dinary value tV (u) = 1 − fV (u) = 1 ∈ [0, 1].

The ordinary case tV (u) = 1 − fV (u) = 0, we
read as: the element u does not belong to the vague
set V . In such scenario, we write

V = {〈u1, [0.2, 0.7]〉, 〈u2, [1, 1]〉}

instead of

V = {〈u1, [0.2, 0.7]〉, 〈u2, [1, 1]〉, 〈u3, [0, 0]〉} ,

whereU = {u1, u2, u3} is some universe of discourse,
and V is some vague set in U .

Let R (A1, A2, ..., An) be a relation scheme on
domains U1, U2,..., Un, where Ai is an attribute on
the universe of discourse Ui, i ∈ {1, 2, ..., n} = I .

Suppose that V (Ui) is the family of all vague sets
in Ui, i ∈ I .

A vague relation r onR (A1, A2, ..., An) is a sub-
set of the cross product V (U1) × V (U2) × ... ×
V (Un).

A tuple t of r is then of the form

(t [A1] , t [A2] , ..., t [An]) ,

where t [Ai] is a vague set in Ui, i ∈ I .
Note that we may (more freely speaking) consider

t [Ai] the value of the attribute Ai on t.
A vague relation r on R (A1, A2, ..., An) can be

visibly represented as a two-dimensional table with n
columns and the table headings A1, A2,..., An, where
each horizontal row of the table is a tuple of r, and
each column of the table contains the attribute values
under the corresponding heading.

Let R (Name, Int, Succ) be a relation scheme
on domains U1 =
{Emy, Ted, Jim,Katie, Sara, T ina, Joe, John},
U2 = {115, 130, 145}, U3 = {5, 10}, where Int
(as intelligence) and Succ (as success) are vague
attributes on universes U2 and U3, respectively,
andName is ordinary attribute on the universe of dis-
course U1.
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Let r be the vague relation instance on
R (Name, Int, Succ) given by Table 1.

Table 1:
Name Int Succ

{Ted} {〈115, [1, 1]〉} {〈10, [1, 1]〉}
{Sara}

{
〈115, [.7, .9]〉,
〈130, [.9, .95]〉

} {
〈5, [.6, .9]〉,
〈10, [.8, .95]〉

}
{Jim}

{
〈130, [.8, .9]〉,
〈145, [.85, .95]〉

} {〈10, [1, 1]〉}

{Katie} {〈145, [1, 1]〉} {〈5, [.9, .95]〉}

The vague sets {〈115, [1, 1]〉} and {〈10, [1, 1]〉},
given in the first row of the Table 1, mean that the
knowledge about Ted’s intelligence and success is
very accurate. More precisely, one knows that his
intelligence and success are exactly 115 and 10, re-
spectively. Having in mind that the ranges of per-
son’s intelligence and success are determined by the
sets {115, 130, 145} and {5, 10}, we may say that
Ted is very successful person with regard to his in-
telligence. Sara’s intelligence is determined by the
vague set {〈115, [0.7, 0.9]〉, 〈130, [0.9, 0.95]〉}. Since
the truth value 0.7 is quite high, the false value 0.1 =
1 − 0.9 is pretty small, and the difference 0.9 − 0.7
= 0.2 is also very small, we conclude that Sara’s in-
telligence must be close to 115. However, 0.9 > 0.7,
0.05 = 1 − 0.95 < 0.1, and 0.95 − 0.9 = 0.05 <
0.2 = 0.9 − 0.7, so Sara’s intelligence is definitively
closer to 130 (from bellow) than to 115 (note that 115
/∈ {〈115, [0.7, 0.9]〉, 〈130, [0.9, 0.95]〉}). Reasoning in
the same way, we conclude that Sara’s success is be-
tween 5 and 10, and it is closer to 10 than to 5. The
data about Katie are quite precise. As opposed to Ted,
however, she is a very intelligent person who is not so
successful. Compared to Ted and Katie, Sara is a rel-
atively intelligent person who is relatively successful.
Finally, Jim is a pretty intelligent person who is also
very successful.

For the basic relational concepts, see, e.g., [19].
Let r1 be the fuzzy relation instance on

R (Name, Int, Succ) given by Table 2 (now, we as-
sume that Int and Succ are fuzzy attributes on U2 and
U3, respectively).

Table 2:
Name Int Succ

t
′
1 {Emy}

{
〈130, a1〉,
〈145, a2〉

} {
〈5, a3〉,
〈10, a4〉

}
t
′
2 {John} {〈115, a5〉} {〈5, 1〉}

In Table 2, a1 ∈ (0, 1) denotes the member-
ship value of the element 130 ∈ U2 to the fuzzy set

{〈130, a1〉, 〈145, a2〉}, etc., a5 ∈ (0, 1) denotes the
membership value of the element 115 ∈ U2 to the
fuzzy set {〈115, a2〉}.

The authors in [12] and [4], for example, apply
fuzzy membership values to incorporate fuzzy data
into relational database theory.

Note that the fuzzy relation instance r1 may be
represented as the vague relation instance given by Ta-
ble 3.

Table 3:
Name Int Succ

t
′
1 {Emy}

{
〈130, [a1, a1]〉,
〈145, [a2, a2]〉

} {
〈5, [a3, a3]〉,
〈10, [a4, a4]〉

}
t
′
2 {John} {〈115, [a5, a5]〉} {〈5, [1, 1]〉}

Similarly, the relation instance r2 on
R (Name, Int, Succ) given by Table 4 (now, we as-
sume that the attributes Int and Succ are ordinary at-
tributes on U2 and U3, respectively), may be repre-
sented as the vague relation instance given by Table
5.

Table 4:
Name Int Succ

t
′′
1 {Joe} {130} {5}
t
′′
2 {Tina} {145} {10}

Table 5:
Name Int Succ

t
′′
1 {Joe} {〈130, [1, 1]} {〈5, [1, 1]}
t
′′
2 {Tina} {〈145, [1, 1]} {〈10, [1, 1]}

For the ordinary relational database theory, see
[31].

The aforementioned examples show clearly that
the vague relation concept represents a natural gen-
eralization of the ordinary relation concept and the
fuzzy relation concept. While the relation theory is
not able to handle imprecise data almost at all, and
the knowledge about fuzzy data has its own limita-
tions, the quality of the information about vague data
is obviously much more refined.

Let a1 = [tV1 (u1) , 1− fV1 (u1)] ⊆ [0, 1] and a2
= [tV2 (u2) , 1− fV2 (u2)]⊆ [0, 1] be the vague values
joined to u1 ∈ U1 and u2 ∈ U2, respectively, where

Vi = {〈ui, [tVi (ui) , 1− fVi (ui)]〉 : ui ∈ Ui}

is a vague set in the universe of discourse Ui, i ∈
{1, 2}.
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We define the similarity measure SE (a1, a2) be-
tween the vague values a1 and a2 following Lu-Ng
[21].

Note that SE (a1, a2) ∈ [0, 1].
Moreover, SE (a1, a2) = SE (a2, a1),

SE (a1, a2) = 1 if and only if a1 = a2, and
SE (a1, a2) = 0 if and only if a1 = [0, 0], a2 = [1, 1]
or a1 = [0, 1], a2 = [a, a], a ∈ [0, 1] (a1 = [1, 1], a2 =
[0, 0] or a1 = [a, a], a2 = [0, 1], a ∈ [0, 1]).

Note that several authors, including Chen [8], [9],
Hong-Kim [18], Li-Xu [20], Szmidt-Kacprzyk [29],
Grzegorzewski [13], proposed various definitions of
similarity measures between vague sets and distances
between intuitionistic fuzzy sets. According to Lu-
Ng [21], however, the similarity measure given above,
reflects reality in a more appropriate manner when it
comes to more general cases.

Let

A = {〈u, [tA (u) , 1− fA (u)]〉 : u ∈ U}

and

B = {〈u, [tB (u) , 1− fB (u)]〉 : u ∈ U}

be two vague sets in some universe of discourse U .
We define the similarity measure SE (A,B) be-

tween the vague sets A and B accordingly.
As it is usual, we write A ⊆ B (and say that the

vague set A is contained in the vague set B), if tA (u)
≤ tB (u) and 1 − fA (u) ≤ 1 − fB (u) for all u ∈ U .

Hence, A ⊆ B if and only if tA (u) ≤ tB (u),
fA (u) ≥ fB (u) for u ∈ U .

Since A = B if A ⊆ B and B ⊆ A, we obtain
that A = B if and only if tA (u) ≤ tB (u), 1 − fA (u)
≤ 1 − fB (u) and tB (u) ≤ tA (u), 1 − fB (u) ≤ 1 −
fA (u) for u ∈ U , i.e., if and only if tA (u) = tB (u),
1 − fA (u) = 1 − fB (u) for u ∈ U , i.e., if and only
if tA (u) = tB (u), fA (u) = fB (u) for u ∈ U .

Note that SE (A,B) ∈ [0, 1].
Furthermore, SE (A,B) = SE (B,A),

SE (A,B) = 1 if and only if A = B, and SE (A,B)
= 0 if and only if [tA (u) , 1− fA (u)] = [0, 0],
[tB (u) , 1− fB (u)] = [1, 1] for all u ∈ U or
[tA (u) , 1− fA (u)] = [0, 1], [tB (u) , 1− fB (u)] =
[a, a], a ∈ [0, 1], for all u ∈ U .

Now, we are able to calculate the similarity
measures SE (ti [Int] , tj [Int]) and the similarity
measures SE (ti [Succ] , tj [Succ]) for i, j ∈
{1, 2, 3, 4}, where ti, i ∈ {1, 2, 3, 4} are tuples of the
vague relation instance r on R (Name, Int, Succ)
given by Table 1.

We obtain the following results:

I =


1 0.69 0.22 0.33

0.69 1 0.78 0.22
0.22 0.78 1 0.46
0.33 0.22 0.46 1

 ,

S =


1 0.64 1 0.13

0.64 1 0.64 0.55
1 0.64 1 0.13

0.13 0.55 0.13 1

 ,
where, for example, 0.78 means that

0.78 =SE (t3 [Int] , t2 [Int])

=SE (t2 [Int] , t3 [Int])

=
1

3
SE ([0.7, 0.9] , [0, 0])+

1

3
SE ([0.9, 0.95] , [0.8, 0.9])+

1

3
SE ([0, 0] , [0.85, 0.95]) .

Let R (A1, A2, ..., An) be a relation scheme on
domains U1, U2,..., Un, where Ai is an attribute on
the universe of discourse Ui, i ∈ I . Suppose that r is
a vague relation instance on R (A1, A2, ..., An). Let
t1 and t2 be any two (vague) tuples in r. Finally, let
X ⊆ {A1, A2, ..., An} be some set of attributes.

We define the similarity measure SEX (t1, t2) be-
tween the tuples t1 and t2 on the attribute set X as

SEX (t1, t2) = min
A∈X
{SE (t1 [A] , t2 [A])} .

The following auxiliary results hold true.

Lemma 1. Let R (A1, A2, ..., An) be a relation
scheme on domains U1, U2,..., Un, where Ai is an at-
tribute on the universe of discourse Ui, i ∈ I . Let r be
a vague relation instance on R (A1, A2, ..., An). If Y
⊆ X ⊆ {A1, A2, ..., An}, then

SEY (t1, t2) ≥ SEX (t1, t2)

for any t1 and t2 in r.

Lemma 2. Let R (A1, A2, ..., An) be a relation
scheme on domains U1, U2,..., Un, where Ai is an at-
tribute on the universe of discourse Ui, i ∈ I . Let
r be a vague relation instance on R (A1, A2, ..., An).
Suppose that X = {Ai1 , Ai2 , ..., Aik}, where X is a
subset of {A1, A2, ..., An}. If SE

(
t1
[
Aij
]
, t2
[
Aij
])

≥ θ for all j ∈ {1, 2, ..., k}, where t1 and t2 are some
two tuples in r, then SEX (t1, t2) ≥ θ.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Dzenan Gusic, Sanela Nesimovic

E-ISSN: 2224-2856 447 Volume 14, 2019



Lemma 3. Let R (A1, A2, ..., An) be a relation
scheme on domains U1, U2,..., Un, where Ai is an at-
tribute on the universe of discourse Ui, i ∈ I . Let
r be a vague relation instance on R (A1, A2, ..., An).
If SEX (t1, t2) ≥ θ and SEX (t2, t3) ≥ θ, where t1,
t2 and t3 are some three, mutually distinct tuples in
r, and X is a subset of {A1, A2, ..., An}, then the in-
equality SEX (t1, t3) ≥ θ does not necessarily hold
true.

Note that the fact that SE (t1 [A] , t2 [A]) ∈ [0, 1]
for all A ∈ X , yields that SEX (t1, t2) ∈ [0, 1].

Moreover,

SEX (t1, t2) = min
A∈X
{SE (t1 [A] , t2 [A])}

=min
A∈X
{SE (t2 [A] , t1 [A])}

=SEX (t2, t1) .

Furthermore, SEX (t1, t2) = 1 if and only
if min
A∈X
{SE (t1 [A] , t2 [A])} = 1 if and only if

SE (t1 [A] , t2 [A]) = 1 for all A ∈ X if and only if
t1 [A] = t2 [A] for all A ∈ X .

Finally, SEX (t1, t2) = 0 if and only if
min
A∈X
{SE (t1 [A] , t2 [A])} = 0 if and only if there ex-

ists A ∈ X ⊆ {A1, A2, ..., An}, such that
SE (t1 [A] , t2 [A]) = 0 if and only if there
exists A ∈ X such that

[
tt1[A] (u) , 1− ft1[A] (u)

]
=

[0, 0],
[
tt2[A] (u) , 1− ft2[A] (u)

]
= [1, 1] for all u ∈

UA or
[
tt1[A] (u) , 1− ft1[A] (u)

]
= [0, 1],[

tt2[A] (u) , 1− ft2[A] (u)
]
= [a, a], a ∈ [0, 1] for all u

∈ UA, where UA ∈ {U1, U2, ..., Un} is the universe of
discourse that corresponds to the attribute A ∈ X .

2 Vague functional dependencies
Let R (A1, A2, ..., An) be a relation scheme on do-
mains U1, U2,..., Un, where Ai is an attribute on the
universe of discourse Ui, i ∈ I . Suppose that r is a
relation instance on R (A1, A2, ..., An). Furthermore,
let X and Y be subsets of {A1, A2, ..., An}.

Relation instance r is said to satisfy the functional
dependency X → Y , if for every pair of tuples t1 and
t2 in r, t1 [X] = t2 [X] implies that t1 [Y ] = t2 [Y ].
Here, t1 [X] = t2 [X] means that t1 [A] = t2 [A] for
every A ∈ X .

As it is known, the relational model restricts the
attribute values to be atomic (if the attribute value is
precise and crisp, then the value is atomic), i.e., t [Ai]
∈ Ui, i ∈ I for every t ∈ r. Moreover, each Uj ,
j ∈ I is equipped with the identity relation ij : Uj
× Uj → {0, 1}, such that ij (x, y) = 1 if and only
if x = y, and ij (x, y) = 0 if and only if x 6= y. In

other words, the crisp relational model compares two
attribute values by checking whether or not the two
values are equal. Thus, il (tj [Al] , tk [Al]) = 1 if and
only if tj [Al] = tk [Al], and il (tj [Al] , tk [Al]) = 0 if
and only if tj [Al] 6= tk [Al], where tj , tk ∈ r, and Al
∈ {A1, A2, ..., An}.

Unfortunately, the ordinary relational database
model is far from being enough to capture all of the
information about the real-world facts. Namely, the
attribute values are usually imprecise ones, i.e., fuzzy.
In order to be able to store such fuzzy attribute value,
one stores a set of crisp values in place of the fuzzy
value, where the crisp values are some, mutually dis-
tinct elements from the attribute domain, and are sim-
ilar to the fuzzy value. Therefore, the following defi-
nition is more than justified.

Let R (A1, A2, ..., An) be a relation scheme on
domains U1, U2,..., Un, whereAi is an attribute on the
universe of discourse Ui, i ∈ I . A fuzzy relation in-
stance r on R (A1, A2, ..., An) is a subset of the cross
product 2U1 × 2U2 × ... × 2Un of the power sets of
the domains of the attributes. A tuple t of r is then
of the form (t [A1] , t [A2] , ..., t [An]), where t [Ai] ⊆
Ui for i ∈ I , and where we assume that t [Ai] 6= ∅ for
i ∈ I .

As we already noted, any fuzzy attribute value is
described by some set of crisp values, where each of
the crisp values is similar to the fuzzy value. More
precisely, each attribute domain Uj , j ∈ I is equipped
with some similarity relation sj : Uj × Uj → [0, 1],
where sj : Uj × Uj → [0, 1] is said to be a simi-
larity relation on Uj , if for every x, y, z ∈ Uj , the
conditions: sj (x, x) = 1, sj (x, y) = sj (y, x), and
sj (x, z) ≥ max

y∈Uj
(min (sj (x, y) , sj (y, z))) hold true.

Thus, while in the case of relational database model
we were able to check if tj [Al] = tk [Al], now, in the
case of fuzzy relational database model, we are able
to define how conformant tj [Al] and tk [Al] are. In
particular (see, [28]), if sl : Ul × Ul → [0, 1] is a sim-
ilarity relation on Ul, and tj [Al] = dj , tk [Al] = dk,
then the conformance ϕ (Al [tj , tk]) of the attributeAl
on tuples tj and tk is defined by

ϕ (Al [tj , tk])

=min

{
min
x∈dj

{
max
y∈dk
{sl (x, y)}

}
,

min
x∈dk

{
max
y∈dj
{sl (x, y)}

}}
.

Hence, we calculate ϕ (Al [tj , tk]) instead of cal-
culating il (tj [Al] , tk [Al]), i.e., instead of checking
whether or not tj [Al] = tk [Al]. Consequently, we
calculate ϕ (X [tj , tk]) instead of checking whether
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or not tj [X] = tk [X], where X is a subset of
{A1, A2, ..., An}, and ϕ (X [tj , tk]) is the confor-
mance of the attribute set X on tuples tj and tk, de-
fined by

ϕ (X [tj , tk]) = min
A∈X
{ϕ (A [tj , tk])} .

For the similarity-based fuzzy relational database
approach, we refer to [5]-[7].

Now, the condition: t1 [X] = t2 [X] implies that
t1 [Y ] = t2 [Y ], could be read as: if ϕ (X [t1, t2]) resp.
ϕ (Y [t1, t2]) is the conformance of the attribute set
X resp. Y on tuples t1 and t2, then ϕ (Y [t1, t2]) ≥
ϕ (X [t1, t2]). More precisely, we could say that some
fuzzy relation instance r on R (A1, A2, ..., An) satis-
fies the fuzzy functional dependency X →F Y , if for
every pair of tuples t1 and t2 in r, ϕ (Y [t1, t2]) ≥
ϕ (X [t1, t2]).

Consider the following example.
Let R (Tea,Exp, Sal) be a relation scheme

on domains U1 = {Grace,Harry,Oscar}, U2 =
{low, high}, U2 = {3800USD, 4500USD}, where
Exp (as experience) and Sal (as salary) are fuzzy at-
tributes on universes U2 and U3, respectively, and Tea
(as teachers) is ordinary attribute on the universe of
discourse U1.

Let s2 : U2 × U2 → [0, 1] be the similarity rela-
tion on U2 defined by s2 (low, high) = 0.3, and s3
: U3 × U3 → [0, 1] be the similarity relation on U3

defined by s3 (3800USD, 4500USD) = 0.5. Let r3
be the fuzzy relation instance on R (Tea,Exp, Sal)
given by Table 6.

Table 6:
Tea Exp Sall

{Grace} {low, high} {3800$, 4500$}
{Oscar} {low} {3800$}

Consider the dependency: teachers with similar
experiences should have similar salaries. Note that
the values of the attributes: experience and salary my
be imprecise. This fact, as well as the fact that the
word similar is applied within dependency, imply that
this dependency can be taken as an example of fuzzy
functional dependency. It can be written in the form
X →F Y , where X = {Exp} and Y = {Sal}.

Let’s check if the fuzzy relation instance r3 satis-
fies X →F Y . We obtain,

ϕ (X [t1, t2])

= min
A∈X
{ϕ (A [t1, t2])} = ϕ (Exp [t1, t2])

=min {min {1, 0.3} ,min {1}}
=min {0.3, 1} = 0.3,

ϕ (Y [t1, t2])

=min
A∈Y
{ϕ (A [t1, t2])} = ϕ (Sal [t1, t2])

=min

{
min

{
max {s3 (3800USD, 3800USD)} ,

max {s3 (4500USD, 3800USD)}
}
,

min
{
max

{
s3 (3800USD, 3800USD) ,

s3 (3800USD, 4500USD)
}}}

=min {min {1, 0.5} ,min {1}}
=min {0.5, 1} = 0.5.

The condition ϕ (Y [t1, t2]) ≥ ϕ (X [t1, t2]) is
satisfied. This means that r3 satisfies X →F Y .

Assume for a moment that t2 [Exp] =
{low, high}. Now,

ϕ (X [t1, t2])

=ϕ (Exp [t1, t2])

=min

{
min

{
max

{
s2 (low, low) ,

s2 (low, high)
}
,

max {s2 (high, low) , s2 (high, high)}
}
,

min
{
max {s2 (low, low) , s2 (low, high)} ,

max {s2 (high, low) , s2 (high, high)}
}}

=min

{
min {max {1, 0.3} ,max {0.3, 1}} ,

min {max {1, 0.3} ,max {0.3, 1}}

}
=min {min {1, 1} ,min {1, 1}}
=min {1, 1} = 1.

In this case, ϕ (Y [t1, t2]) = 0.5 < 1 =
ϕ (X [t1, t2]), i.e., r3 violates X →F Y .

Note that the dependency: teachers with simi-
lar experiences should have similar salaries, tells the
truth about the real-world. Obviously, both scenar-
ios t2 [Exp] = {low} and t2 [Exp] = {low, high}
are possible in reality. In the first case, Grace and
Oscar have similar experiences and similar salaries,
where the salaries are more similar than the experi-
ences are. In the second case, their salaries are sim-
ilar, but not identical, although their experiences are
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identical. This discussion shows that the dependency:
teachers with similar experiences should have similar
salaries, makes sense by itself, and that the instance r3
should satisfy this dependency in both cases, t2 [Exp]
= {low} and t2 [Exp] = {low, high}. The inequal-
ities ϕ (Y [t1, t2]) ≥ ϕ (X [t1, t2]), ϕ (Y [t1, t2]) <
ϕ (X [t1, t2]), where t2 [Exp] = {low}, t2 [Exp] =
{low, high}, respectively, tell us, however, that the
condition ϕ (Y [t1, t2]) ≥ ϕ (X [t1, t2]) is not ade-
quate for determining whether or not the fuzzy rela-
tion instance r satisfies the fuzzy functional depen-
dency X →F Y . If this condition is satisfied, the in-
stance r satisfies the dependency X →F Y for sure.
Otherwise, if the condition fails, the instance r may or
may not satisfy X →F Y .

In order to overcome these difficulties and correct
the irregularities, Sozat and Yazici [28] introduced the
following definition.

Let R (A1, A2, ..., An) be a relation scheme on
domains U1, U2,..., Un, where Ai is an attribute on
the universe of discourse Ui, i ∈ I . Suppose that r is
a fuzzy relation instance on R (A1, A2, ..., An). Fur-
thermore, letX and Y be subsets of {A1, A2, ..., An},
and θ ∈ [0, 1]. Fuzzy relation instance r is said to sat-

isfy the fuzzy functional dependency X θ−→F Y , if for
every pair of tuples t1 and t2 in r, ϕ (Y [t1, t2]) ≥
min {θ, ϕ (X [t1, t2])}.

Thus, if it happens that ϕ (Y [t1, t2]) ≥
ϕ (X [t1, t2]) for t1, t2 ∈ r, then

ϕ (Y [t1, t2]) ≥ϕ (X [t1, t2])

≥min {θ, ϕ (X [t1, t2])}

for every t1, t2 ∈ r, and θ ∈ [0, 1], i.e., r satisfies X
θ−→F Y for every θ ∈ [0, 1].

More generally, if it happens that for every
t1, t2 ∈ r, either ϕ (Y [t1, t2]) ≥ ϕ (X [t1, t2]) or
ϕ (Y [t1, t2]) ≥ θ, then

ϕ (Y [t1, t2]) ≥ min {θ, ϕ (X [t1, t2])}

for every t1, t2 ∈ r, i.e., r satisfies X θ−→F Y .
Consequently, if it happens that for some t1, t2 ∈

r, ϕ (Y [t1, t2]) < ϕ (X [t1, t2]), and ϕ (Y [t1, t2]) <

θ, then the instance r violates the dependency X θ−→F

Y .
In particular, the instance r3 satisfies the depen-

dency X θ−→F Y for every θ ∈ [0, 1] (see, Table 6).
Furthermore, if t2 [Exp] = {low, high}, then the in-
stance r3 satisfies resp. violates the dependency X
θ−→F Y if θ ∈ [0, 0.5] resp. θ ∈ (0.5, 1].

The value θ ∈ [0, 1] that appears in the notation

X
θ−→F Y is called the linguistic strength of the fuzzy

functional dependency. If θ = 1, the fuzzy functional
dependency X θ−→F Y becomes X →F Y .

Now, one could try to say that some vague re-
lation instance r on R (A1, A2, ..., An) satisfies the
vague functional dependency X →V Y , if for ev-
ery pair of tuples t1 and t2 in r, SEY (t1, t2) ≥
SEX (t1, t2) (see, e.g., [21], [32]).

Recall the vague relation instance r given by Ta-
ble 1.

Consider the dependency: the intelligence level
of a person more or less determines the degree of suc-
cess.

Since the values of the attributes intelligence and
success may be imprecise, we may consider this de-
pendency as a vague functional dependency. We can
write it in the form X →V Y , where X = {Int} and
Y = {Succ} (see, Table 1).

Let’s check if the vague relation instance r satis-
fies X →V Y .

Since (see, matrices I and S),

SEY (t3, t4) =min
A∈Y
{SE (t3 [A] , t4 [A])}

=SE (t3 [Succ] , t4 [Succ]) = 0.13

and

SEX (t3, t4) = min
A∈X
{SE (t3 [A] , t4 [A])}

=SE (t3 [Int] , t4 [Int]) = 0.46,

it follows that the instance r violates X →V Y . The
vague functional dependency: the intelligence level
of a person more or less determines the degree of
success, however, tells the truth about the real-world
in the same way the fuzzy functional dependency:
teachers with similar experiences should have similar
salaries does. Moreover, the scenario presented by the
vague relation instance r (Table 1), makes sense in re-
ality. This actually means that the instance r should
somehow satisfy the dependency X →V Y .

Reasoning as in the case of fuzzy
functional dependencies, we conclude that the condi-
tion SEY (t1, t2) ≥ SEX (t1, t2), t1, t2 ∈ r, must be
adapted. We introduce the following definition.

Let R (A1, A2, ..., An) be a relation scheme on
domains U1, U2,..., Un, where Ai is an attribute on
the universe of discourse Ui, i ∈ I . Suppose that r is
a vague relation instance on R (A1, A2, ..., An). Fur-
thermore, letX and Y be subsets of {A1, A2, ..., An},
and θ ∈ [0, 1]. Vague relation instance r is said to

satisfy the vague functional dependency X θ−→V Y , if
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for every pair of tuples t1 and t2 in r, SEY (t1, t2) ≥
min {θ, SEX (t1, t2)}.

Thus, if SEY (t1, t2) ≥ SEX (t1, t2) for t1, t2 ∈
r, the instance r satisfiesX θ−→V Y for θ ∈ [0, 1]. If for
every t1, t2 ∈ r, either SEY (t1, t2) ≥ SEX (t1, t2)

or SEY (t1, t2) ≥ θ, the instance r satisfies X θ−→V

Y . Finally, if for some t1, t2 ∈ r, the conditions
SEY (t1, t2) < SEX (t1, t2) and SEY (t1, t2) < θ

hold true, the instance r violates X θ−→V Y .
Now, the vague relation instance r given by Table

1, satisfies resp. violates the vague functional depen-
dency X θ−→V Y ({Int} θ−→V {Succ}), if θ ∈ [0, 0.13]
resp. θ ∈ (0.13, 1].

If θ = 1, the vague functional dependency X θ−→V

Y becomes X →V Y .
For yet another definition of vague functional de-

pendency, called α-vague functional dependency, see
[24].

3 Soundness of inference rules for
vague functional dependencies

The following rules are the inference rules for vague
functional dependencies (VFDs).

VF1 Inclusive rule for VFDs: If X θ1−→V Y

holds, and θ1 ≥ θ2, then X θ2−→V Y holds.

VF2 Reflexive rule for VFDs: IfX ⊇ Y , thenX
→V Y holds.

VF3 Augmentation rule for VFDs: If X θ−→V Y

holds, then XZ θ−→V Y Z holds.

VF4 Transitivity rule for VFDs: If X θ1−→V Y

and Y θ2−→V Z hold true, then X
min(θ1,θ2)→ V Z

holds true.

Here, XZ means X ∪ Z.

Theorem 4. The inference rules: VF1, VF2, VF3 and
VF4 are sound.

4 Soundness of additional inference
rules for vague functional depen-
dencies

The following inference rules are additional inference
rules for vague functional dependencies. We note that

these rules follow from the rules: VF1, VF2, VF3 and
VF4. This means that the vague functional dependen-
cies obtained by the additional rules can certainly be
obtained by successive application of the rules: VF1,
VF2, VF3 and VF4. The additional inference rules,
however, can make such an effort much shorter and
easier.

VF5 Union rule for VFDs: If X θ1−→V Y and X
θ2−→V Z hold true, then X

min(θ1,θ2)→ V Y Z holds
also true.

VF6 Pseudo-transitivity rule for VFDs: If X
θ1−→V Y and WY

θ2−→V Z hold true, then WX
min(θ1,θ2)→ V Z holds true.

VF7 Decomposition rule for VFDs: If X θ−→V Y

holds, and Z ⊆ Y , then X θ−→V Z also holds.

Theorem 5. The inference rules: VF5, VF6 and VF7
are sound.

5 Completeness of inference rules for
vague functional dependencies

Let R (A1, A2, ..., An) be a relation scheme on do-
mains U1, U2,..., Un, where Ai is an attribute on the
universe of discourse Ui, i ∈ I .

Suppose that V is some set of vague functional
dependencies on {A1, A2, ..., An}. The closure V+
of V is the set of all vague functional dependencies
that can be derived from V by repeated applications
of the inference rules: VF1, VF2, VF3 and VF4.

Note that the set V+ is infinite one regardless of
whether the set V is finite or not. Namely, if X θ−→V

Y belongs to V , then, by VF1, X θ1−→V Y belongs to
V+ for all θ1 ∈ [0, θ).

Let X θ−→V Y be some vague functional depen-
dency on {A1, A2, ..., An}. The dependency X θ−→V

Y may or may not belong to V+. The limit strength
of X θ−→V Y (with respect to V) is the number θl (V)
∈ [0, 1], such that X

θl(V)−−−→V Y belongs to V+, and θ
′

≤ θl (V) for each X θ
′

−→V Y that belongs to V+.

IfX θ−→V Y belongs to V+, then the limit strength
θl (V) obviously exists. Otherwise, if X θ−→V Y does
not belong to V+, the limit strength θl (V) does not
necessarily exist.

Let X be a subset of {A1, A2, ..., An}, and θ
be a number in [0, 1]. The closure X+ (θ,V) of
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X (with respect to V) is the set of attributes A ∈
{A1, A2, ..., An}, such that X θ−→V A belongs to V+.

Now, if A ∈ X , then, by VF2, X →V A belongs
to V+. Hence, by VF1, X θ−→V A belongs to V+.
Therefore,A∈X+ (θ,V). SinceA∈X , we conclude
that X ⊆ X+ (θ,V).

Theorem 6. Let R (A1, A2, ..., An) be a relation
scheme on domains U1, U2,..., Un, where Ai is an at-
tribute on the universe of discourse Ui, i ∈ I . Let
V+ be the closure of V , where V is some set of vague
functional dependencies on {A1, A2, ..., An}. Sup-

pose that X θ−→V Y is some vague functional depen-
dency on {A1, A2, ..., An}. Then, X θ−→V Y belongs
to V+ if and only if Y ⊆ X+ (θ,V).

Theorem 7. The set {V F1, V F2, V F3, V F4} is
complete set.

6 Main result
For various definitions of similarity measures, see,
[21], [8], [9], [18] and [20].

Furthermore, for various definitions of vague
functional dependencies, see, [21], [24] and [32].

By Theorem 7, the set {V F1, V F2, V F3, V F4}
is complete set.

This means that there exists a vague relation in-
stance r∗ on R (A1, A2, ..., An) (r∗ is denoted by r

in [16]), such that r∗ satisfies A 1θ→V B if A 1θ→V

B belongs to V+, and violates X
θ→V Y , where

X
θ→V Y is some vague functional dependency on

{A1, A2, ..., An} which is not an element of the clo-
sure V+ of V .

In this paper we shall apply the following opera-
tors (see, e.g., [27]):

TM (x, y) =min {x, y} ,
SM (x, y) =max {x, y} ,
IL (x, y) =min {1− x+ y, 1} .

TM is the minimum t-norm, SM is the maximum
t-co-norm, and IL is the Lukasiewicz fuzzy implica-
tion.

Lukasiewicz fuzzy implication IL is pretty uni-
versal fuzzy implication since it is at the same
time an S-implication, an R-implication, and a QL-
implication.

For various works on S, R and QL-implications,
see, [1], [2], [22], [30], [26], [23], [25].

For detailed study on fuzzy implications, we refer
to [3].

Let r = {t1, t2} be any two-element vague rela-
tion instance on R (A1, A2, ..., An), and β ∈ [0, 1].

If SE (t1 [Ak] , t2 [Ak]) ≥ β resp.
SE (t1 [Ak] , t2 [Ak]) < β, we put ir,β (Ak) to be
some value in the interval

(
1
2 , 1
]

resp.
[
0, 12
]
.

Through the rest of the paper, we shall assume
that each time some r = {t1, t2} and some β ∈ [0, 1]
are given, the fuzzy formula

(∧A∈XA)⇒ (∧B∈YB)

with respect to ir,β , is joined to X θ→V Y , where X
θ→V Y is a vague functional dependency on
{A1, A2, ..., An}.

Theorem 8. Let R (A1, A2, ..., An) be a relation
scheme on domains U1, U2,..., Un, where Ai is an
attribute on the universe of discourse Ui, i ∈ I . Let
C be some set of vague functional dependencies on
{A1, A2, ..., An}. Suppose that X θ→V Y is some
vague functional dependency on {A1, A2, ..., An}.
The following two conditions are equivalent:

(a) Any two-element vague relation instance on
R (A1, A2, ..., An) which satisfies all dependencies in

C, satisfies the dependency X θ→V Y .
(b) Let r be any two-element vague relation in-

stance on R (A1, A2, ..., An), and β ∈ [0, 1]. Suppose
that ir,β (K) > 1

2 for all K ∈ C ′
, where C

′
is the set

of fuzzy formulas with respect to ir,β , joined to the el-
ements of C. Then,

ir,β ((∧A∈XA)⇒ (∧B∈YB)) >
1

2
.

Proof. For the sake of simplicity, we may assume that
U1 = U2 = ... = Un = {u} = U .

Let θ
′
= min {θ, θC}, where

θC = min
K1θ→V L∈C

{1θ} .

We may assume that θ
′
< 1.

Otherwise, if θ
′
= 1, then θ = 1 and θC = 1, i.e.,

θ = 1 and 1θ = 1 for all K 1θ→V L ∈ C.
This case, where the linguistic strength of f1 is 1

if f1 ∈ C ∪
{
X

θ→V Y
}

is not interesting, however.

Fix some θ
′′
< θ

′
.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Dzenan Gusic, Sanela Nesimovic

E-ISSN: 2224-2856 452 Volume 14, 2019



Let

V1 = {〈u, [tV1 (u) , 1− fV1 (u)]〉 : u ∈ U}
= {〈u, [tV1 (u) , 1− fV1 (u)]〉} = {〈u, a〉} ,

V2 = {〈u, [tV2 (u) , 1− fV2 (u)]〉 : u ∈ U}
= {〈u, [tV2 (u) , 1− fV2 (u)]〉} = {〈u, b〉}

be two vague sets in U , where

SEU (a, b) = θ
′′

for SEU : V ag (U) × V ag (U)→ [0, 1], a similarity
measure on V ag (U) = {a, b}.

We obtain,

SE (V1, V2)

=min
{

min
〈u,a〉∈V1

{
max
〈u,b〉∈V2

{
SEU

(
a, b
)}}

,

min
〈u,b〉∈V2

{
max
〈u,a〉∈V1

{
SEU

(
b, a
)}}}

=θ
′′
.

Obviously, SE (V1, V1) = SE (V2, V2) = 1.
Furthermore,

SE (A,B)

=min
{

min
〈u,x〉∈A

{
max
〈u,y〉∈B

{
SEU

(
x, y
)}}

,

min
〈u,y〉∈B

{
max
〈u,x〉∈A

{
SEU

(
y, x
)}}}

≥min
{
θ
′′
, θ

′′
}
= θ

′′

for any two vague setsA= {〈u, x〉} andB = {〈u, y〉}
in U .

(a)⇒ (b) Suppose that the condition (a) is satis-
fied.

Moreover, suppose that the condition (b) is not
satisfied.

It follows that there is a two-element vague rela-
tion instance r on R (A1, A2, ..., An), and β ∈ [0, 1],
such that

ir,β ((∧A∈KA)⇒ (∧B∈LB)) >
1

2
.

for all (∧A∈KA)⇒ (∧B∈LB) ∈ C ′
, and

ir,β ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2
.

Define

W =

{
A ∈ {A1, A2, ..., An} : ir,β (A) >

1

2

}
.

Suppose that W = ∅.
It follows that ir,β (A) ≤ 1

2 for all A ∈
{A1, A2, ..., An}.

Hence,

ir,β (∧A∈MA)

=min {ir,β (A) : A ∈M} ≤ 1

2

for all M ⊆ {A1, A2, ..., An}.
Since

ir,β ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2
,

it follows that

min {1− ir,β (∧A∈XA) + ir,β (∧B∈YB) , 1}

=ir,β ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2
.

If

min {1− ir,β (∧A∈XA) + ir,β (∧B∈YB) , 1} = 1,

then, 1 ≤ 1
2 . This is a contradiction.

Hence,

min {1− ir,β (∧A∈XA) + ir,β (∧B∈YB) , 1}
=1− ir,β (∧A∈XA) + ir,β (∧B∈YB) .

We obtain,

1− ir,β (∧A∈XA) + ir,β (∧B∈YB) ≤ 1

2
,

i.e.,

1

2
+ ir,β (∧B∈YB) ≤ ir,β (∧A∈XA) .
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Since ir,β (∧B∈YB) ≥ 0, it follows that
ir,β (∧A∈XA) ≥ 1

2 .
This contradicts the fact that ir,β (∧A∈XA) ≤ 1

2 .
We conclude, W 6= ∅.
Suppose that W = {A1, A2, ..., An}.
Now, ir,β (A) > 1

2 for all A ∈ {A1, A2, ..., An}.
Consequently,

ir,β (∧A∈MA)

=min {ir,β (A) : A ∈M} > 1

2

for all M ⊆ {A1, A2, ..., An}.
Since

ir,β ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2
,

it follows that

1

2
+ ir,β (∧B∈YB) ≤ ir,β (∧A∈XA) .

Now, ir,β (∧B∈YB) > 1
2 yields that

ir,β (∧A∈XA) > 1.
This is a contradiction.
We conclude, W 6= {A1, A2, ..., An}.
Let r

′
=
{
t
′
, t

′′
}

be the vague relation instance
on R (A1, A2, ..., An) given by Table 7.

Table 7:
attributes of W other attributes

t
′

V1, V1, ..., V1 V1, V1, ..., V1
t
′′

V1, V1, ..., V1 V2, V2, ..., V2

We shall prove that the instance r
′
satisfiesK 1θ→V

L if K 1θ→V L belongs to C, and violates X θ→V Y .
Suppose that K 1θ→V L belongs to C.
Assume that ir,β (∧A∈KA) ≤ 1

2 .
Since,

ir,β (∧A∈KA)
=min {ir,β (A) : A ∈ K} ,

it follows that there exists A0 ∈K such that ir,β (A0)

≤ 1
2 .

Hence, A0 /∈W .
It follows that

SE
(
t
′
[A0] , t

′′
[A0]

)
= SE (V1, V2) = θ

′′
.

Consequently,

SEK

(
t
′
, t

′′
)
= min

A∈K

{
SE

(
t
′
[A] , t

′′
[A]
)}

= θ
′′

since

SE
(
t
′
[A] , t

′′
[A]
)
= SE (V1, V1) = 1

if A ∈W , and

SE
(
t
′
[A] , t

′′
[A]
)
= SE (V1, V2) = θ

′′

if A /∈W .
Note that SEM

(
t
′
, t

′′
)
≥ θ′′ for all M ⊆

{A1, A2, ..., An}.
In particular, SEL

(
t
′
, t

′′
)
≥ θ′′ .

We obtain,

SEL

(
t
′
, t

′′
)
≥θ′′ = min

{
1θ, θ

′′
}

=min
{
1θ, SEK

(
t
′
, t

′′
)}

.

This means that r
′

satisfies K 1θ→V L.
Suppose that ir,β (∧A∈KA) > 1

2 .
Since

ir,β ((∧A∈KA)⇒ (∧B∈LB)) >
1

2
,

it follows that

min {1− ir,β (∧A∈KA) + ir,β (∧B∈LB) , 1} > 1

2
.

Suppose that ir,β (∧B∈LB) ≤ 1
2 .

We obtain,

1− ir,β (∧A∈KA) + ir,β (∧B∈LB)

<1− 1

2
+

1

2
= 1.

Hence,
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1− ir,β (∧A∈KA) + ir,β (∧B∈LB)

=min {1− ir,β (∧A∈KA) + ir,β (∧B∈LB) , 1} > 1

2
,

i.e.,

1

2
+ ir,β (∧B∈LB) > ir,β (∧A∈KA) .

Since the last inequality holds always true, we
conclude that ir,β (∧A∈KA) < 1

2 .
This is a contradiction.
We conclude, ir,β (∧B∈LB) > 1

2 .
Since

ir,β (∧B∈LB)

=min {ir,β (B) : B ∈ L} ,

it follows that ir,β (B) > 1
2 for all B ∈ L.

Hence, B ∈W for all B ∈ L, i.e., L ⊆W .
Consequently,

SEL

(
t
′
, t

′′
)
= min

A∈L

{
SE

(
t
′
[A] , t

′′
[A]
)}

= 1.

Therefore,

SEL

(
t
′
, t

′′
)
= 1 ≥ min

{
1θ, SEK

(
t
′
, t

′′
)}

.

This means that r
′

satisfies K 1θ→V L.
It remains to prove that r

′
violates X θ→V Y .

Since

ir,β ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2
,

we have that

1

2
+ ir,β (∧B∈YB) ≤ ir,β (∧A∈XA) .

If ir,β (∧B∈YB) > 1
2 , then ir,β (∧A∈XA) > 1.

This is a contradiction.
Hence, ir,β (∧B∈YB) ≤ 1

2 .
Since

1

2
+ ir,β (∧B∈YB) ≤ ir,β (∧A∈XA)

holds always true, it follows that ir,β (∧A∈XA) = 1.
Now, reasoning in the same way as earlier, we

obtain that SEY
(
t
′
, t

′′
)
= θ

′′
resp. SEX

(
t
′
, t

′′
)
=

1 follows from ir,β (∧B∈YB)≤ 1
2 resp. ir,β (∧A∈XA)

= 1.
We have,

SEY

(
t
′
, t

′′
)
=θ

′′
< θ

′ ≤ θ

=min {θ, 1}

=min
{
θ, SEX

(
t
′
, t

′′
)}

.

This means that r
′

satisfies X θ→V Y .
Thus, r

′
is a two-element vague relation instance

on R (A1, A2, ..., An) which satisfies all dependen-

cies in C, and violates the dependency X θ→V Y .
This contradicts the fact that the condition (a) is

satisfied.
Consequently, the condition (b) is satisfied.
(b)⇒ (a) Suppose that the condition (b) is satis-

fied.
Moreover, suppose that the condition (a) is not

satisfied.
It follows that there is a two-element vague re-

lation instance r
′
=
{
t
′
, t

′′
}

on R (A1, A2, ..., An)

which satisfies all dependencies in C, and violates the
dependency X θ→V Y .

Define

W =
{
A ∈ {A1, A2, ..., An} :

SE
(
t
′
[A] , t

′′
[A]
)
= 1
}
.

Suppose that W = ∅.
It follows that SE

(
t
′
[A] , t

′′
[A]
)
= θ

′′
for all A

∈ {A1, A2, ..., An}.
Hence, SEM

(
t
′
, t

′′
)
= θ

′′
for all M ⊆

{A1, A2, ..., An}.
Since r

′
violates X θ→V Y , we have that

SEY

(
t
′
, t

′′
)
< min

{
θ, SEX

(
t
′
, t

′′
)}

.

Now, SEY
(
t
′
, t

′′
)
= SEX

(
t
′
, t

′′
)
= θ

′′
yields

that
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θ
′′
< min

{
θ, θ

′′
}
= θ

′′
.

This is a contradiction.
We conclude, W 6= ∅.
Suppose that W = {A1, A2, ..., An}.
It follows that SE

(
t
′
[A] , t

′′
[A]
)
= 1 for all A

∈ {A1, A2, ..., An}.
Consequently, SEM

(
t
′
, t

′′
)
= 1 for all M ⊆

{A1, A2, ..., An}.
Now, SEY

(
t
′
, t

′′
)
= SEX

(
t
′
, t

′′
)
= 1, and the

fact that r
′

violates X θ→V Y , yield that

1 < min {θ, 1} = θ.

This is a contradiction.
We obtain, W 6= {A1, A2, ..., An}.
Since r

′
is a two-element vague relation instance

on R (A1, A2, ..., An), and 1 ∈ [0, 1] is a number, we
are able to define ir′ ,1.

We have,

ir′ ,1 (Ak) >
1

2
if SE

(
t
′
[Ak] , t

′′
[Ak]

)
≥ 1,

ir′ ,1 (Ak) ≤
1

2
if SE

(
t
′
[Ak] , t

′′
[Ak]

)
< 1,

k ∈ {1, 2, ..., n}, i.e.,

ir′ ,1 (Ak) >
1

2
if SE

(
t
′
[Ak] , t

′′
[Ak]

)
= 1,

ir′ ,1 (Ak) ≤
1

2
if SE

(
t
′
[Ak] , t

′′
[Ak]

)
= θ

′′
,

k ∈ {1, 2, ..., n}, i.e.,

ir′ ,1 (Ak) >
1

2
if Ak ∈W,

ir′ ,1 (Ak) ≤
1

2
if Ak /∈W,

k ∈ {1, 2, ..., n}.
Thus,

ir′ ,1 (A) >
1

2
if A ∈W,

ir′ ,1 (A) ≤
1

2
if A /∈W.

We shall prove that

ir′ ,1 ((∧A∈KA)⇒ (∧B∈LB)) >
1

2

for all (∧A∈KA)⇒ (∧B∈LB) ∈ C ′
, and

ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2
.

We may assume that (∧A∈KA) ⇒ (∧B∈LB) ∈
C

′
corresponds to K 1θ→V L ∈ C.
Suppose that ir′ ,1 ((∧A∈KA)⇒ (∧B∈LB)) ≤ 1

2 .
Reasoning as earlier, we obtain

1

2
+ ir′ ,1 (∧B∈LB) ≤ ir′ ,1 (∧A∈KA) .

It follows that ir′ ,1 (∧B∈LB) ≤ 1
2 , and

ir′ ,1 (∧A∈KA) = 1.
Hence, there exists B0 ∈ L such that ir′ ,1 (B0) ≤

1
2 .

We obtain, SE
(
t
′
[B0] , t

′′
[B0]

)
= θ

′′
.

Consequently, SEL
(
t
′
, t

′′
)
= θ

′′
.

Similarly, ir′ ,1 (∧A∈KA) = 1 yields that

SEK

(
t
′
, t

′′
)
= 1.

Therefore,

SEL

(
t
′
, t

′′
)
=θ

′′
< θ

′ ≤1 θ

=min {1θ, 1}

=min
{
1θ, SEK

(
t
′
, t

′′
)}

.

This contradicts the fact that r
′

satisfiesK 1θ→V L.
Hence, ir′ ,1 ((∧A∈KA)⇒ (∧B∈LB)) > 1

2 .
Similarly, suppose that

ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB)) > 1
2 .

Let ir′ ,1 (∧A∈XA) ≤
1
2 .

Now, as earlier, SEX
(
t
′
, t

′′
)
= θ

′′
.

Since SEM
(
t
′
, t

′′
)
≥ θ′′ for all M ⊆

{A1, A2, ..., An}, it follows that

SEY

(
t
′
, t

′′
)
≥ θ′′ =min

{
θ, θ

′′
}

=min
{
θ, SEX

(
t
′
, t

′′
)}

.
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This contradicts the fact that r
′

violates X θ→V

Y .
Let ir′ ,1 (∧A∈XA) >

1
2 .

Reasoning as before,
ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB)) > 1

2 yields that
ir′ ,1 (∧B∈YB) > 1

2 .

Hence, SEY
(
t
′
, t

′′
)
= 1.

Consequently,

SEY

(
t
′
, t

′′
)
= 1 ≥ min

{
θ, SEX

(
t
′
, t

′′
)}

.

This contradicts the fact r
′

violates X θ→V Y .
We obtain, ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2 .
Thus,

ir′ ,1 ((∧A∈KA)⇒ (∧B∈LB)) >
1

2

for all (∧A∈KA)⇒ (∧B∈LB) ∈ C ′
, and

ir′ ,1 ((∧A∈XA)⇒ (∧B∈YB)) ≤ 1

2
.

This contradicts the fact that the condition (b) is
satisfied.

Therefore, the condition (a) is satisfied.
This completes the proof.

7 Applications
Example 1. Let R (A,B,C,D,E) be a relation
scheme on domains U1, U2, U3, U4, U5, where A is
an attribute on the universe of discourse U1,..., E is
an attribute on the universe of discourse U5. Suppose
that the following vague functional dependencies on
{A,B,C,D,E} hold true.

{A,B} θ1→V C,

B
θ2→VD,

{C,D} θ3→VE.

Then, the vague functional dependency {A,B}
θ→V E on {A,B,C,D,E} holds also true. Here, θ =
min {θ1, θ2, θ3}.

Proof. I We may apply the inference rules VF1-VF7.
We obtain:

1) B θ2→V D (input)

2) {A,B} θ2→V {A,D} (from 1) and VF3)

3) {A,D} →V D (from {A,D} ⊇ D and VF2)

4) {A,D} θ→V D (from 3) and VF1)

5) {A,B} θ→V D (from 2), 4) and VF4)

6) {A,B} θ1→V C (input)

7) {A,B} θ→V {C,D} (from 5), 6) and VF5)

8) {C,D} θ3→V E (input)

9) {A,B} θ→V E (from 7), 8) and VF4)

Proof. II We may apply Theorem 4 in [17, p. 262].
Note that the condition (a) of Theorem 4 actu-

ally states that the dependency {A,B} θ→V E follows
from the set

C =
{
{A,B} θ1→V C,B

θ2→V D, {C,D} θ3→V E
}

of given vague functional dependencies.
Since the conditions (a) and (b) of Theorem 4 are

equivalent, it is enough to prove that the condition (b)
is satisfied.

As it is usual, we apply the resolution principle.
Suppose that

ir,β (K1)

=ir,β ((A ∧B)⇒ C) >
1

2
,

ir,β (K2)

=ir,β (B ⇒ D) >
1

2
,

ir,β (K3)

=ir,β ((C ∧D)⇒ E) >
1

2
,

where r is a two-element vague relation instance on
R (A,B,C,D,E), and β ∈ [0, 1] is a number.
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Our goal is to prove that

ir,β

(
c
′
)

=ir,β ((A ∧B)⇒ E) >
1

2
.

First, we find the conjunctive normal forms of the
formulas K1, K2, K3 and ¬c′ . This is in line with the
resolution principle.

We obtain,

K1 ≡¬A ∨ ¬B ∨ C,
K2 ≡¬B ∨D,
K3 ≡¬C ∨ ¬D ∨ E,

¬c′ ≡A ∧B ∧ ¬E.

The set M of all conjunctive terms that appear
within conjunctive normal forms of the formulas K1,
K2, K3 and ¬c′ is given by

M =
{
¬A ∨ ¬B ∨ C,¬B ∨D,

¬C ∨ ¬D ∨ E,A,B,¬E
}
.

Applying the resolution principle to the elements
of the set M , we obtain

1) ¬A ∨ ¬B ∨ C (input)

2) A (input)

3) ¬B ∨ C (resolvent from 1) and 2))

4) B (input)

5) C (resolvent from 3) and 4))

6) ¬B ∨D (input)

7) D (resolvent from 4) and 6))

8) ¬C ∨ ¬D ∨ E (input)

9) ¬D ∨ E (resolvent from 5) and 8))

10) E (resolvent from 7) and 9))

11) ¬E (input)

Resolving 10) and 11), we conclude that the in-
equalities: ir,β (K1) >

1
2 , ir,β (K2) >

1
2 , ir,β (K3) >

1
2 and ir,β

(
c
′
)
≤ 1

2 cannot be valid at the same time.

Since, ir,β (K1) >
1
2 , ir,β (K2) >

1
2 , ir,β (K3) >

1
2 , it follows that must be ir,β

(
c
′
)
> 1

2 .
Thus, the condition (b) of Theorem 4 is satisfied.
Hence, the condition (a) of the same theorem is

satisfied.
Therefore, {A,B} θ→V E follows.

For analogous results in the case of fuzzy func-
tional (and fuzzy multivalued) dependencies, see,
[10], [11], [14], [15].
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[15] Dž. Gušić, On Fuzzy Dependencies and
g-generated Fuzzy Implications in Fuzzy Rela-
tions, WSEAS Trans. on Systems and Control 14,
2019, pp. 71–89.
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